Anova for (hyper-)spherical data: Analysis of variance for (hyper-)spherical data
Description
Analysis of variance for (hyper-)spherical data.
Usage
hcf.aov(x, ina, fc = TRUE)
lr.aov(x, ina)
embed.aov(x, ina)
het.aov(x, ina)
Arguments
x
A matrix with the data in Euclidean coordinates, i.e. unit vectors.
ina
A numerical variable or a factor indicating the group of each vector.
fc
A boolean that indicates whether a corrected F test should be used or not.
Value
A vector including:
test
The test statistic value.
p-value
The p-value of the F test.
kappa
The common concentration parameter kappa based on all the data.
Details
The high concentration (hcf.aov), log-likelihood ratio (lr.aov), embedding approach (embed.aov) or the non equal concentration parameters approach (het.aov) is used.
References
Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.